
A daily dose of 5 mg of folic acid for 90 days is associated with 
increased serum unmetabolized folic acid and reduced natural 
killer cell cytotoxicity in healthy Brazilian adults

Clovis Paniz1, Juliano Felix Bertinato1, Maylla Rodrigues Lucena2, Eduardo De Carli3, 
Patrícia Mendonça da Silva Amorim1, Guilherme Wataru Gomes1, Cecília Zanin Palchetti1, 
Maria Stella Figueiredo2, Christine M Pfeiffer4, Zia Fazili4, Ralph Green5, and Elvira Maria 
Guerra-Shinohara1,2

1Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, 
University of Sao Paulo, Sao Paulo, Brazil

2Hematology and Blood Transfusion Division, Federal University of Sao Paulo - EPM/UNIFESP, 
Sao Paulo, Brazil

3Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University 
of Sao Paulo, Sao Paulo, Brazil

4National Center for Environmental Health, CDC, Atlanta, GA, USA

5Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, 
CA, USA*

Abstract

Background—The effects of high dose folic acid (FA) supplementation in healthy individuals on 

blood folate concentrations and immune response are unknown.

Objective—The aim of the study was to evaluate the effects of daily consumption of a tablet 

containing 5 mg of FA on serum folate; number and cytotoxicity of natural killer (NK) cells; 

mRNA expression of dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase 

(MTHFR), interferon-γ (IFNG), tumor necrosis factor-α (TNFA) and interleukin-8 (IL8) genes; 

and concentrations of serum inflammatory markers.

Methods—This prospective clinical trial was conducted in 30 healthy Brazilian adults, (15 

women), aged 27.7 y (95% CI: 26.4, 29.1 y), with a body mass index (in kg/m2) of 23.1 (95% CI: 

22.0, 24.3). Blood was collected at baseline and after 45 and 90 d of intervention. Serum folate 

concentrations were measured by microbiologic assay and HPLC-tandem mass spectrometry 

[folate forms, including unmetabolized folic acid (UMFA)]. We used real-time polymerase chain 
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reaction to assess mononuclear leukocyte mRNA expression and flow cytometry to measure the 

number and cytotoxicity of NK cells.

Results—Serum folate concentration increased by ~5-fold after the intervention (P < 0.001), and 

UMFA concentrations increased by 11.9- and 5.9-fold at 45 and 90 d, respectively, when 

compared with baseline (P < 0.001). UMFA concentrations increased (> 1.12 nmol/L) in 29 

(96.6%) participants at day 45 and in 26 (86.7%) participants at day 90. We observed significant 

reduction in the number (P < 0.001) and cytotoxicity (P = 0.003) of NK cells after 45 and 90 d. 

Compared with baseline, DHFR mRNA expression was higher at 90 d (P = 0.006) and IL8 and 

TNFA mRNA expressions were higher at 45 and 90 d (P = 0.001 for both).

Conclusion—This noncontrolled intervention showed that healthy adults responded to a high 

dose FA supplement with increased UMFA concentrations, changes in cytokine mRNA 

expression, and reduced number and cytotoxicity of NK cells. This trial was registered at 

www.ensaiosclinicos.gov.br as RBR-2pr7zp.
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INTRODUCTION

Folate plays an important role in one-carbon transfer reactions, participating in DNA, RNA, 

and protein methylation reactions; nucleic acid synthesis; and gene expression regulation (1, 

2). Folate requirements are increased during pathological conditions, such as cancer and 

hemolytic anemias, but also during physiological conditions, such as certain age groups, 

pregnancy, and lactation (3–5).

To avoid folate deficiency, Brazilian patients with chronic hemolytic anemia are usually 

given folic acid (FA) supplements at 5 mg/d during virtually their entire lives. Furthermore, 

the Brazilian government recommends that women who want to conceive or are pregnant 

take 5 mg FA/d (6), which is higher than the 0.4–0.6 mg/d recommended in other countries 

with FA fortification programs, such as the United States. In fact, the 5-mg FA supplement is 

the main formulation available in Brazil. This vitamin dose is 5 times that of the Tolerable 

Upper Intake Levels for healthy individuals (7). The effects of high-dose FA 

supplementation on blood folate concentrations and inflammatory markers, and on the 

number and cytotoxicity of NK cells, are not known.

Different from the naturally occurring food folate, FA is a synthetic, oxidized form of folate 

that is found in fortified foods and supplements. FA must be reduced first to dihydrofolate 

and then to tetrahydrofolate (THF) by dihydrofolate reductase (DHFR) before it can be 

incorporated into the active cellular folate pool (8). Higher amounts of FA intake exceed the 

enzyme’s capacity to reduce the vitamin, resulting in the appearance of unmetabolized FA 

(UMFA) in plasma (9, 10). Thus, circulating UMFA implies, hypothetically, that the body’s 

capacity to convert FA to metabolically active folate has been exceeded (11).
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Currently, there is concern about the possibility of potential adverse effects of FA when used 

in high amounts over extended periods of time. The 2015 report from the National 

Toxicology Program on safe use of high intakes of FA provides a current review and 

discussion, with special focus on four categories of potential adverse health effects: cancer, 

cognition in conjunction with vitamin B-12 deficiency, hypersensitivity-related outcomes, 

and thyroid and diabetes-related disorders (12). However, these findings still need to be 

reproduced in a more rigorous way, if they are detected in specific populations.

In a select population of obese, postmenopausal, white women, Troen et al. (13) found an 

association between plasma UMFA concentrations and reduced NK cell cytotoxicity, 

whereas an in vitro study carried out by Hirsch et al. (14) did not find such an association. 

NK cells comprise 5–25% of peripheral blood lymphocytes (15), and provide an important 

effector arm of the innate immune system, mediating spontaneous “natural” cytotoxicity 

toward certain tumor and virus-infected cells. Furthermore, NK cells are also a major source 

of some cytokines, such as IFN-γ and TNF-α (16, 17). However, at present, it is unclear 

whether increased or decreased NK activity has any beneficial or adverse health effects.

The effects of daily high dosages of FA on blood folate concentrations are well described 

(18, 19), but the effects on immune function in healthy individuals are less well known. 

Thus, the objective of this study was to evaluate the effect of a high-dose FA supplement (5 

mg/d over 90 d) in common use in Brazil and other countries on blood concentrations of 

folate and inflammatory markers, number and cytotoxicity of NK cells, and mRNA 

expression of 5 genes in a small convenience sample of healthy Brazilian individuals.

MATERIALS AND METHODS

Participants and study design—The current study was a clinical trial registered in the 

Brazilian registry of clinical trials (ReBEC; http://www.ensaiosclinicos.gov.br: 

RBR-2pr7zp). Thirty healthy men and women (15 of each sex) were recruited from the pool 

of students or staff of the University of Sao Paulo, Sao Paulo, Brazil. These participants 

were invited by pamphlets and their participation was voluntary. The Institutional Ethics 

Committee approved this study (CNS 466/12, CAEE 04389512.2.000.0067) and a written 

informed consent was obtained from all participants before their inclusion in the study. The 

analysis of blinded specimens by the CDC Nutritional Biomarkers Laboratory (serum folate 

forms) did not constitute engagement in human subject research. Other blood measurements 

were performed in laboratories at the University of Sao Paulo, Brazil.

Participants were subjected to an intervention study with daily consumption of one tablet 

containing 5 mg FA for 90 d. The vitamin used in the intervention was the same brand 

(Afopic; Teuto) and lot number for all participants. Adherence to the study was confirmed 

with tablet counting and regular phone reminders, as well as when the next box of 5-mg FA 

was provided. The exclusion criteria were as follows: age <18 y, chronic alcoholism, acute 

or chronic diseases, pregnancy, use of medications (immunosuppressive, multivitamins, FA 

and vitamin B-12 supplements), or individuals who donated blood within the past 6 mo.
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Peripheral venous blood samples (40 mL) were obtained at baseline from each participant 

after an overnight fast (≥8 h) by using the Vacutainer system (Becton Dickinson). Dried 

vacuum tubes were used to obtain serum; tubes containing K2EDTA were used to perform 

complete blood and reticulocytes count, DNA extraction and to obtain plasma; and tubes 

containing sodium heparin were used for the separation of mononuclear leucocytes, 

extraction of RNA and to obtain plasma. The same procedures were performed at day 45 

(T45) and at day 90 (T90), with overnight fast (≥8h) venous blood collection for each 

participant, by using similar tubes and volume, ensuring that the last use of 5-mg FA tablet 

was 24h before blood sampling. To ensure that blood collection was performed >24h after 

the last FA tablet was taken, we contacted the participants before T45 and T90, and 

requested that they take the FA tablet before 09:00 on day 44 and day 89. We also requested 

to the participants to take that FA tablet after blood collection at T45. No participants 

reported any side effects related to the vitamin use.

Serum vitamin concentrations and plasma total homocysteine

Serum folate was determined by a microbiologic assay with the use of Lactobacillus casei 
(chloramphenicol-resistant strain NCIB 10463), and FA (F7876 Sigma Aldrich folic acid 

98%) was used as calibrator (20). The limit of detection was 0.03 nmol/L.

Concentrations of serum folate forms [UMFA, tetrahydrofolate (THF), 5-methyl-THF, 5-

formyl-THF, 5,10-methenyl-THF, and MeFox (an oxidation product of 5-methyl-THF)] 

were analyzed by HPLC-tandem MS (HPLC-MS/MS) (21). The limit of detection to 

UMFA, 5-methyl-THF, THF, 5-formyl-THF, 5,10-methenyl-THF, and MeFox were 0.14, 

0.13, 0.25, 0.20, 0.20, and 0.10 nmol/L, respectively. Serum total folate was calculated as the 

sum of these folate forms excluding MeFox.

Serum vitamin B-12 was determined by microbiologic assay with the use of colistin sulfate-

resistant strain of Lactobacillus leishmannii (22,23). The limit of detection was 36.9 pmol/L. 

Plasma total homocysteine (tHcy) was measured by using a chemiluminescent immunoassay 

on the IMMULITE 2000 analyzer (Siemens Healthcare). The limit of detection was 2 

μmol/L.

Determination of Complete Blood Count and reticulocytes

A complete blood count and reticulocyte counts were determined in EDTA whole-blood 

samples on an electronic analyzer Pentra 120 (Horiba).

Concentrations of serum high-sensitivity C-reactive protein and serum activity of lactate 
dehydrogenase

High-sensitivity C-reactive protein (hs-CRP) was determined by an immunoturbidimetric 

assay using the Roche-CRPL kit on the Cobas 8000 analyzer (Roche Diagnostics). Lactate 

dehydrogenase (LDH) activity was determined by an enzymatic assay using the Vitros 250 

analyzer (Ortho Clinical Diagnostics).
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Concentrations of serum cytokines

The cytokines IL-6, IL-8, IL-10, IFN-γ and TNF-α were determined by a multiplex 

immunoassay, the high-sensitivity panel T Cell Magnetic Bead Milliplex Map (EMD 

Millipore Corporation) on the Bio-PLex 200 analyzer (Bio-Rad Laboratories, Inc.), 

following the manufacturer’s protocols.

Determination of number and cytotoxicity of NK cells

Sample preparation (effector and target cells) and NK cell identification, as well as 

determining the number of NK cells, were performed on the day of blood collection as 

previous described (24). Briefly, target cells (human chronic myelogenous leukemia cell line 

K562 in the log phase) were previously labelled by adding Dioctadecyloxacarbocyanine 

perchlorate (DiO) and adjusted to a concentration of 106 cells/mL in phosphate buffer. 

Effector (mononuclear cells) and target cells were added in tubes to create four different 

effector-to-target ratios of 25:1, 12.5:1, 6.25:1 and 3.125:1 (each proportion in duplicate) 

and incubated for 2h at 37° C in a 5% CO2 incubator, with addition of 0.15 mM propidium 

iodide (PI). The NK cytotoxicity assay was than performed by using FACS Canto II (BD 

Biosciences) equipment. A total of 20,000 events were acquired. Cells marked with both 

DiO and PI were considered dead target cells, whereas those positive only for DiO 

represented surviving target cells. Controls comprised target cells only plus PI and effector 

cells only plus PI and were used to determine spontaneous lysis and nonviable effector cells, 

respectively.

In this assay, the lytic unit was defined as the number of effector cells (NK) required to lyse 

15% of target cells. Cytotoxic capacity of NK cells was defined as the ratio of the “number 

of NK cells in 1 mL of whole blood” per lytic unit.

DHFR 19-bp deletion polymorphism analysis

DNA was obtained from total blood with the use of QIAMP Blood DNA Mini Kit (Qiagen). 

Genotyping for DHFR 19-bp deletion (rs70991108) was performed by PCR according to the 

previously described methods (25).

Isolation of total RNA, cDNA synthesis and mRNA expression

Peripheral blood mononuclear cell total RNA was extracted by using Trizol® reagent 

(Invitrogen), following the manufacturer’s instructions. The concentration of total RNA 

extracted was determined by spectrophotometry at 260 nm with the use of Nanodrop 

ND-1000 (Thermo Scientific), and integrity was evaluated by 1% agarose gel 

electrophoresis stained with GelRed. The cDNA was synthesized from 500 ng of RNA by 

using the High-Capacity RNA-to-cDNA kit (Invitrogen Life Technologies) in a final volume 

of 20 μL according to the manufacturer’s instructions.

mRNA expression of DHFR, methylenetetrahydrofolate reductase (MTHFR), interferon-γ 
(IFNG), tumor necrosis factor-α (TNFA) and IL8 genes were performed by real-time PCR 

with the use of TaqMan assays (Hs00758822_s1, Hs00195560_m1, Hs00989291_m1, 

Hs01113624_g1, Hs01553824_g1; Applied Biosystems). Six genes [β2-microglobulin 

(B2M), GAPDH, hydroxymethylbilane sinthase (HMBS), hypoxantine 
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phosphoribolsyltransferase 1 (HPRT1), actin β (ACTB), and ubiquitin C (UBC) were tested 

by using geNorm software (26) in order to evaluate the most stable genes under 

experimental conditions, and ACTB and HPRT1 was chosen as the reference genes (TaqMan 

assays Hs01060665_g1 and Hs02800695_m1, respectively). The mRNA expression results 

were normalized by ACTB and HPRT1 housekeeping mRNA expression mean and 

calculated by 2−ΔCT as described by Livak and Schmittgen (27). All reactions were executed 

in duplicate, and each reaction plate was analyzed in the presence of a negative control to 

assess possible reagent contamination.

BMI

Body weight was measured with each participant wearing only light clothing and no shoes, 

to the nearest 0.1 kg by using a digital weight scale (Kratos). Height was measured to the 

nearest 0.1 cm by using a portable stadiometer (Alturexata). BMI was calculated by dividing 

weight (kg) divided by height- squared (in meters). Participants were classified as 

underweight [BMI (kg/m2) <18.5], normal weight (BMI: 18.5–24.9), overweight (BMI 

25.0-29.9), or obese (BMI ≥30.0) (28).

Cut-off points

Serum folate concentrations <7.0 and >45 nmol/L were considered to represent folate 

deficiency and high concentration, respectively (29). High serum UMFA was defined as 

>1.12 nmol/L, according to the 95th percentile in the distribution of values obtained from 

1730 individuals (aged 20–39 y) by Pfeiffer et al. (30) in an NHANES study.

Plasma tHcy concentrations >13.9 μmol/L were considered to be high (31). Serum vitamin 

B-12 concentrations <148 pmol/L were considered to represent vitamin B1-2 deficiency 

(32). Anemia was defined as a hemoglobin level <120 g/L in women and <130 g/L in men 

(33).

Dietary intake assessment

Two 24-h dietary recalls were obtained in each period of the study, the first one on the day of 

blood collection and the second one a few days after blood collection. A randomization 

schedule for 24-h dietary recall collections was created to allow dietary intake 

representativeness for every day of the week, including weekend days. Data were entered 

into the Nutrition Data System for Research software version 2014, developed by the 

Nutrition Coordinating Center, University of Minnesota. This software uses the USDA food-

composition table as its main database, from which 3 estimates are calculated: the folate 

naturally present in foods, the dietary FA added to fortified foods, and the total dietary folate 

expressed as dietary folate equivalents (DFEs). The synthetic FA, and consequently DFE, 

values were corrected to account for differences in the mandatory fortification amounts 

between Brazil (150 μg FA/100 g flour) and the United States (140 μg FA/100 g flour). The 

Multiple Source Method (version 1.0.1, v2008–2011; Department of Epidemiology of the 

German Institute of Human Nutrition Potsdam-Rehbrücke) was used to correct the effect of 

within-individual variability on data in order to estimate usual dietary intake distributions 

(deattenuated data) (34).
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Statistical analyses

Statistical analyses were carried out by using SPSS version 22.0 (IBM), GraphPad Prism 

version 5.04 (GraphPad Software, Inc.) and Minitab version 17 software. The chi-square 

test, the likelihood ratio, or Fisher’s exact tests were used to analyze the frequencies of 

categorical variables. One-factor repeated-measure ANOVA was used to compare numeric 

variables at baseline and after the daily intervention with 5 mg FA/d. When we found a 

significant difference by using ANOVA, Tukey test was performed. When data were not 

distributed, Box-cox transformation was performed for normalization [all forms of folate, 

vitamin B-12, tHcy, hemoglobin, white blood cells, reticulocytes, LDH, hs-CRP, serum 

cytokines, expression of mRNA of 4 genes (DHFR, IFNG, IL8 and TNFA), and number and 

cytotoxicity capacity of NK cells], before using 1-factor repeated-measure ANOVA. 

Furthermore, transformed variables were used for the Pearson correlation. Unpaired t test 

was used to compare FA forms and vitamin B-12 and tHcy concentrations according to sexes 

at each blood collection time. Means and 95% confidence interval of back-transformed 

values are presented in Tables 1–4 and Figures 1 and 2.

Twenty-two univariate linear regression models were conducted for each dependent variable: 

log numbers of NK cells and log cytotoxic capacity of NK cells. One multiple linear 

regression model was performed for each dependent variable cited above. Only variables 

that had significant P values in univariate linear regression were included as independent 

variable in multiple linear regression mode. There were strong Pearson correlations between 

intervention with 5 mg FA/d, serum folate, serum total folate, THF, UMFA and 5-methyl-

THF. Because of this, only 5-methyl-THF was included together with other variables in 

multiple linear regression models. The Bonferroni correction is shown in the legends for 

Tables 3 and 4. The level of significance was set at P <0.05.

RESULTS

The geometric mean age for the study participants was 27.7 y (95% CI: 26.4, 29.1 y), and all 

of participants reported being nonsmokers. The geometric mean BMI was 23.1 kg/m2 (95% 

CI: 22.0, 24.3). Only 1 woman and 6 men (23%) were overweight, whereas 1 man (3.3%) 

was classified as obese. No participant was underweight.

Natural folate intake was higher at baseline than at T45 and T90 (P <0.001), and FA intake 

from fortified foods was similar when comparing baseline with T45 and T90 (P >0.05). 

However, total food folate intake, expressed as DFEs, did not differ significantly between 

the study periods (P =0.103).

Serum total folate concentrations of samples measured by microbiologic assay correlated 

significantly with concentrations measured by HPLC-MS/MS (Pearson correlation: r= 

0.987, P <0.001, n=90). On average, serum folate concentrations obtained by HPLC-MS/MS 

were higher than those obtained by microbiologic assay (32% at baseline and 19% at T45 

and T90), as showed in Table 1.

Serum folate (both assays), UMFA, 5-methyl-THF, THF, and MeFox concentrations 

increased significantly after 45 and 90 d of the FA intervention compared with baseline 
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(Table 1). At baseline, UMFA contributed 2.6% to the concentration of serum total folate 

(HPLC-MS/MS), however, after the intervention, the UMFA contribution increased to 7.3% 

and 3.5% at T45 and T90, respectively. The contribution of 5-methyl-THF to serum total 

folate (HPLC-MS/MS) decreased from 95.1% at baseline to 76.6% and 82.7% at T45 and 

T90, respectively (Table 1). The 2 minor folate forms, serum 5-formyl-THF and 5,10-

methenyl-THF, were below the limit of detection at baseline and during post-intervention in 

most participants.

Serum folate (both microbiologic and HPLC-MS/MS methods) and 5-methyl-THF 

concentrations were lower in men than in women at baseline, T45 and T90 (P < 0.050). No 

difference was found between men and women for UMFA, MeFox and vitamin B-12 

concentrations (P > 0.050). tHcy concentrations were higher in men at all blood collection 

times (P < 0.050).

Concentrations of serum folate >45 nmol/L were observed in 28 (93.3%) and 30 (100%) 

participants during the intervention period (both at T45 and T90) with the microbiologic and 

HPLC-MS/MS assay, respectively. UMFA concentrations increased (>1.12 nmol/L) in 29 

(96.6%) participants at T45 and in 26 (86.7%) participants at T90 (Table 1). Moreover, at the 

end of the intervention study, 15 (50.0%) participants had UMFA concentrations between 

1.12 and 1.83 nmol/L, 6 (20%) had concentrations between 2.10 and 8.68 nmol/L, and 5 

(16.6%) had concentrations between 49.5 and 278 nmol/L.

Folate deficiency (serum folate <7 nmolL) was found in 4 (13.3%) participants at baseline, 

but not after the intervention period, on the bases of data from the microbiologic assay. On 

the bases of HPLC-MS/MS, none of the participants presented with folate deficiency at 

either time point.

We found no differences across time points for vitamin B-12 or tHcy concentrations (Table 

1). No serum vitamin B-12 deficiency was found. Although only one participant (3.3%) had 

values above the tHcy cutoff at baseline (15.4 μmol/L); after 45 and 90 d of intervention 

tHcy concentrations were reduced to 14.0 and 12.2 μmol/L, respectively.

We observed no significant differences between baseline and the intervention for white 

blood cells and reticulocytes or concentrations of hemoglobin and serum cytokines (Table 

2). LDH activity was higher at T90, whereas hs-CRP concentrations showed reduced values 

at T45 when compared with baseline values (Table 2).

Intervention with FA for 45 and 90 d significantly reduced the absolute NK cell count and 

the cytotoxicity capacity of these cells (Figure 1). The statistical powers of these tests were 

0.859 and 0.961, respectively.

We observed higher DHFR mRNA expression at T90 than at baseline and T45. We also 

observed higher TNFA and IL8 mRNA expression at T45 and T90 than at baseline. On the 

other hand, IFNG mRNA expressions was lower at T45 than at baseline, whereas no 

significant differences were observed for MTHFR mRNA expressions with FA intervention 

(Figure 2).
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With regard to the 19-bp deletion on DHFR polymorphism, 6 participants were 

homozygoous for the 19-bp deletion, 16 participants were heterozygous, and 6 had the wild-

type genotype. DHFR mRNA expression was similar among the 3 genotypes for the DHFR 
19-bp deletion.

After Bonferroni correction in multivariate linear regression models, only serum 5-methyl-

THF and TNF-α were inversely associated, whereas serum IFN-γ was positively associated 

with the log of NK cell number (Table 3). Furthermore, serum 5-methyl-THF and TNF-α 
were inversely associated, whereas serum IL-6 was positively associated with the log of 

cytotoxicity capacity of NK cells (Table 4).

DISCUSSION

This noncontrolled intervention study showed how a small group of young, healthy adults 

responded to a 3-mo high-dose FA supplement regimen, namely with increased 

concentrations of serum UMFA and reduced number and cytotoxicity of NK cells. Our study 

adds to the small number of studies previously reported on this topic (13, 14).

We used 2 methods to measure serum folate, and the results of the 2 methods showed strong 

correlations. However, folate concentrations by HPLC/MS-MS were 30% higher at baseline 

and 19% higher at 45 and 90 d than were folate concentrations by microbiological assay. 

This difference is larger than the 610% difference between the 2 assays reported previously 

by Fazili et al. (35) who used Lactobacillus rhamnosus as the micro-organism for their 

microbiological assay. We used the L. casei strain as published by O’Broin and Kelleher 

(20) (chloramphenicol-resistant strain NCIB 10463). Both micro-organisms should grow in 

the presence of multiple forms of folate, detecting all biologically active folate species 

equally, while excluding those without vitamin activity (36). However, the microbiological 

assay has not yet been standardized, and different results have been reported from different 

laboratories (37).

As expected, the intervention with 5 mg FA/d, even for just a short time (45 d), produced a 

several fold increase in serum folate concentrations. The 5-methyl-THF form was the main 

contributor to serum folate concentrations, increasing at the same rate as serum folate after 

the intervention. Detectable concentrations of serum UMFA were present in all of the 

participants at baseline (geometric mean: 0.59 nmol/L; 95% CI: 0.52, 0.68 nmol/L). In a 

previous cross-sectional study, carried out in 144 healthy Brazilian non–supplement users 

exposed to mandatory wheat and maize flour fortification with FA, it was observed that 

dietary FA was associated with UMFA concentrations (geometric mean: 0.55 nmol/L; 95% 

CI: 0.50, 0.61 nmol/L) (38).

The UMFA concentrations in this study were similar to those found in the cross-sectional 

2007–2008 NHANES (geometric mean: 0.64 nmol/L; 95% CI: 0.51, 0.87 nmol/L) 

performed in the US population ~ 10 y after the introduction of mandatory food fortification 

(39). Not surprisingly, after the intervention with 5 mg FA/d, the majority of participants in 

our study showed increased UMFA concentrations, with some >50 nmol/L. Notably, total 

food folate and dietary FA intakes in our study were similar at baseline, T45, and T90, 
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which confirms that the increase in UMFA at T45 and T90 was the result of the daily use of 

a supplement tablet with 5 mg FA.

Men showed lower serum folate and 5-methyl-THF concentrations and higher tHcy 

concentrations than did women at baseline and after the intervention. By using data from the 

NHANES, Pfeiffer et al. (39) also reported lower serum folate concentrations in men than in 

women [geometric mean (95% CI): 41.5 nmol/L (39.8, 43.2 nmol/L) and 45.4 nmol/L (43.7, 

47.2 nmol/L), respectively], but the observed concentrations were lower in our small study 

[12.2 nmol/L (9.2, 16.0 nmol/L) and 24.1 nmol/L (18.7, 31.1 nmol/L) for men and women, 

respectively].

Whether circulating UMFA at low or high concentrations has any health effects in general, 

or particularly in patients who use high doses of FA for therapeutic purposes over extended 

periods of time, is unknown. Animal models have shown that a high-FA diet can result in 

reduced NK cell cytotoxicity in aged mice (40). Likewise, mice that were supplemented with 

high amounts of FA before being infected with malaria (Plasmodium berghei) exhibited 

lower numbers of specific T and NK cell subpopulations than did mice that were infected 

but that were fed a normal diet (41). We observed a reduced number of NK cells and 

decreased cytotoxicity in healthy young participants who consumed 5 mg FA/d for 45 and 

90 d. Our data corroborate previous findings by Troen et al. (13) that a high FA intake from 

supplementation was associated with reduced cytotoxicity of NK cells in vivo in obese 

postmenopausal women who consumed the greatest amount of folate from their diet. 

However, in the present study, BMI was not associated with cytotoxicity of NK cells. The 

assessment of NK cell activity could be an important measure of innate immune function of 

these cells in some diseases (24), especially in cancer, where several studies have shown an 

inverse relation between NK activity and the risk of cancer (42–45).

The mechanism by which high concentrations of FA may impair the activity of NK cells 

remains unclear, and this may only occur in vivo, because in vitro NK cell activity was not 

modified by concentrations of FA and 5-methyl-THF in cell culture medium (14). We 

hypothesize that folate receptor 4 (FR4), present in regulatory T (Treg) cells, may be 

involved in this mechanism. FR4, a subtype of folate receptor, is highly expressed on the 

surface of Treg cells as a specific marker, distinguishing them from other native or activated 

T cells (46–48). In turn, Treg cells were shown to be able to profoundly inhibit NK cell 

functions in animal models, suggesting that Treg cells may play a major role in NK cell 

regulation (49, 50). However, more studies are needed to confirm this regulation and to 

deepen our understanding on how this mechanism works.

NK cells are main producers of inflammatory cytokines, such as IFN-γ and TNF-α, in many 

physiologic and pathologic conditions. They also produce a variety of immunosuppressive 

cytokines (e.g., IL-10), as well as growth factors (51, 52). An increase in TNF- α was 

observed in mice infected with malaria when they were fed a diet rich in FA but not when 

they were fed a normal diet (41). We did not find significant differences in serum 

concentrations of IL-6, IL-8, IL-10, IFN-γ, and TNF- α comparing pre- and 

postintervention periods, possibly because of the short time that participants were exposed to 

the high-dose FA supplement. However, in multiple linear regression, serum 5-methyl-THF 
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and serum TNF- α were inversely associated, whereas serum IFN-γ was positively 

associated, with NK cell number. Interestingly, serum 5-methyl-THF and serum TNF-α 
were also inversely associated, whereas serum IL-6 was positively associated, with the 

cytotoxic capacity of NK cells. Furthermore, the significant increases we observed in TNFA 
and IL8 mRNA expression after FA supplementation further indicate a connection between 

higher FA concentrations and innate immunity. A longer intervention period may possibly 

lead to alterations in cytokine concentrations because of the increased mRNA expression we 

observed.

The considerable increase observed in UMFA concentrations seems to stimulate, at least at 

the transcription level, the production of DHFR, as observed in increased DHFR mRNA 

expression after 90 d of 5-mg FA/d supplementation. However, after the reduction in FA to 

an active form of folate, MTHFR mRNA expression was not affected. In contrast to Xu et al. 

(53), we did not observe any association between the presence of genotypes for 19-bp 

deletion in DHFR and DHFR mRNA expression.

With regard to the absence of modifications observed in vitamin B-12 and tHcy 

concentrations after the intervention period, it is important to highlight that both vitamin 

B-12 and tHcy concentrations were normal in most of our participants. Thus, it is to be 

expected that especially tHcy concentrations would not be further lowered by additional 

folate intake. One participant who showed increased tHcy concentrations at baseline showed 

normal concentrations after 90 d of intervention with FA. Neither vitamin B-12 nor tHcy 

showed any association with NK cell variables or with serum concentrations of cytokines. 

The slight increase in LDH activity after 90 d (P = 0.014) and a slight reduction in hs-CRP 

concentrations after 45 d of FA use (P = 0.006) indicate reduced inflammation and tissue 

damage; however, the health relevance of these modest changes is not known.

Limitations of our study include the relatively small number of individuals, the high 

interindividual variability in the cytotoxicity test, and the limited intervention period. 

Although this study represents a small convenience sample, it is important because the 

participants are healthy young adults. Because of the rather short intervention period, our 

study should be considered an exploratory laboratory study that shows how humans respond 

to high dosages of FA, rather than equating our findings with health outcomes. Findings 

could be different for patients with severe hereditary anemia, who take high FA doses for 

prolonged periods, sometimes during their entire life, to compensate for the higher 

erythropoiesis rate that results in an increased folate requirement (54, 55). Other studies with 

a larger number of participants are needed to confirm our findings, especially in patients 

who use high-FA doses for a prolonged period.
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FIGURE 1. 
Number (A) and cytotoxic capacity (B) of NK cells in healthy individuals at baseline and at 

45 and 90 d postintervention with 5 mg FA/d; n = 29 and n = 27, respectively. Values are 

means and 95% CIs of reconverted data by using Box-Cox transformation. One-factor 

repeated-measures ANOVA was used; when significant, Tukey’s test was performed. Bars 

with different lowercase letters indicate significant differences, P < 0.05. Statistical power of 

ANOVA for number (A) and cytotoxicity capacity (B) of NK cells: 0.859 and 0.961, 

respectively. FA, folic acid; UL 15%, number of effector cells needed to lyse 15% of target 

cells.
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FIGURE 2. 
Expression of DHFR (A), MTHFR (B), IFNG (C), TNFA (D), and IL8 (E) mRNA in 29 

healthy individuals at baseline and at 45 and 90 d postintervention with 5 mg FA/d. Values 

are means and 95% CIs and were transformed by Box-Cox and are presented after 

reconversion. One-factor ANOVA with repeated measures was used; when significant, 

Tukey’s test was performed. Columns with different lowercase letters indicate significant 

differences, P < 0.05. DHFR, dihydrofolate reductase; FA, folic acid; IFNG, interferon γ; 

MTHFR, methylenetetrahydrofolate reductase; TNFA, tumor necrosis factor α.
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TABLE 1

Blood concentrations of vitamins and total homocysteine in 30 healthy individuals at baseline and after the 

intervention with 5 mg FA/d1

Baseline

Intervention with 5 mg FA/d

P45 d 90 d

Serum folate, 2 nmol/L 17.1 (15.1–19.5)a 81.7 (71.9–92,9)b 84.5 (74.4–96.2)b <0.001

Serum total folate, 3 nmol/L 22.6 (20.2–25.4)a 97.1 (86.6–108.9)b 100.1 (89.2–112.2)b <0.001

Serum UMFA,3 nmol/L 0.57 (0.51–0.64)a 3.86 (2.94–5.28)b 2.21 (1.79–2.79)b <0.001

Serum 5-methyl-THF,3 nmol/L 22.5 (18.9–26.5)a 75.8 (68.1–83.9)b 83.8 (76.8–91.0)b <0.001

Serum THF,3 nmol/L 0.40 (0.32–0.49)a 0.94 (0.69–1.22)b 1.19 (1.02–1.32)b <0.001

Serum MeFox,3 nmol/L 0.70 (0.57–0.85)a 1.67 (1.36–2.04)b 1.65 (1.42–1.92)b <0.001

High serum folate, (>45.0 nmol/L), n (%)

 Microbiologic assay 1 (3.3)a 28 (93.3)b 28 (93.3)b <0.0014

 HPLC/MS-MS 2 (6.6)a 30 (100)b 30 (100)b <0.0014

High serum UMFA,3 (> 1.12 nmol/L) 2 (6.6)a 29 (96.6)b 26 (86.7)b <0.0015

Serum vitamin B12,2 pmol/L 376 (334–421) 364 (327–403) 387 (342–434)   0.332

Plasma total homocysteine,6 μmol/L 8.4 (7.6–9.3) 8.1 (7.4–8.9) 8.0 (7.2–8.8)   0.394

1
Values are means and 95% CIs of back-transformed values unless otherwise indicated. Serum 5,10-methenyl-THF and 5-formyl-THF were below 

the limit of detection (0.2 nmol/L). Numeric variables were transformed by Box-Cox, and the data are presented after reconversion.

One-factor repeated-measures ANOVA was used; when significant, Tukey’s test was performed. Labeled means in a row without a common 
superscript letter differ, P < 0.05. FA, folic acid; HPLC-MS/MS, HPLC–tandem MS; MeFox, oxidation product of 5-methyl-THF; THF, 
tetrahydrofolate; UMFA, unmetabolized folic acid.

2
Derived by using a microbiological assay.

3
Derived by using HPLC-MS/MS.

4
Derived by using likelihood ratios.

5
Derived by using chi-square.

6
Derived by using chemiluminescence.
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TABLE 2

Hematologic and biochemical variables in 30 healthy individuals at baseline and after the intervention with 5 

mg FA/d1

Baseline

Intervention with 5 mg FA/d

P45 d 90 d

Hemoglobin, g/L 141 (136–146) 141 (136–145) 143 (139–147) 0.282

Anemia, n (%) 2 (6.7) 0 0

WBCs × 109/L 6.15 (5.51–6.79) 5.86 (5.13–6.58) 6.03 (5.19–6.89) 0.203

Reticulocyes × 109/L 41.3 (37.8–45.4) 36.8 (34.0–40.0) 39.0 (35.9–42.7) 0.344

LDH, U/L 374 (352–396)a 385 (360–411)a.b 407 (386–430)b 0.014

hs-CRP, mg/dL 0.27 (0.23–0.25)a 0.24 (0.21–0.23)b 0.29 (0.25–0.27)a.b 0.006

IL-6, pg/mL 0.67 (0.49–0.87) 0.80 (0.57–1.06) 0.70 (0.50–0.94) 0.558

IL-8, pg/mL 3.82 (2.96–4.83) 4.31 (3.44–5.36) 3.97 (3.28–4.77) 0.609

IL-10, pg/mL 3.35 (2.56–4.32) 3.03 (2.40–3.79) 3.17 (2.37–4.19) 0.797

IFN-γ, pg/mL 4.49 (3.12–6.12) 5.57 (3.80–7.69) 5.51 (3.93–7.35) 0.237

TNF-α, pg/mL 3.17 (2.63–3.83) 3.23 (2.64–3.96) 3.45 (2.70–4.40) 0.170

1
Values are means and 95% CIs of back-transformed values unless otherwise indicated. Numeric variables were transformed by Box-Cox, and the 

data are presented after reconversion. One-factor repeated-measures ANOVA was used; when significant, Tukey’s test was performed. Labeled 
means in a row without a common superscript letter differ, P < 0.05. FA, folic acid; hs-CRP, high-sensitivity C-reactive protein; LDH, lactate 
dehydrogenase; WBC, white blood cell.
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